Skip to main content

Process validation guidelines

Free pharmacy material

Process validation guidelines

In 2011, FDA published an updated guidance document, Process Validation: General Principles and Practices, which replaced the previous 1987 version (2). The changes in the guidelines reflect an increased emphasis on a scientific, data-driven approach to process validation and a more holistic view of the product lifecycle, which includes the following stages:
  • Stage 1—Process Design
  • Stage 2—Process Qualification
  • Stage 3—Continued Process Verification.
The core of each stage is “the collection and evaluation of data…which establishes scientific evidence that a process is capable of consistently delivering quality products” (2). These guidelines are explicitly aligned with the risk-based approach outlined in International Council for Harmonization (ICH) Q8 (R2), Q9, and Q10 including quality by design (QbD). 
Prior to this, process validation was generally considered a commercialization activity and typically involved running three batches to demonstrate that the process was reproducible and capable of delivering consistent product quality. The updated guidelines recommend the use of statistical techniques to demonstrate process capability and emphasize the importance of providing “sufficient statistical confidence of quality both within a batch and between batches” (2). It is well established that, for biologics, the process is the product; therefore, ensuring that the process is well characterized is essential for maintaining product quality. 

Comments

Popular posts from this blog

Diazotization Titrations

Free pharmacy material Diazotization Titrations INTRODUCTION The diazotization titration is nothing but the conversion of the primary aromatic amine to a diazonium compound. This process was first discovered in 1853 and was applied to the synthetic dye industry. The reaction mechanism was first proposed by Peter Griessin. In this method, the primary aromatic amine is reacted with the sodium nitrite in acidic medium to form a diazonium salt. This method is first used in the determination of dyes. PRINCIPLE The principle involved in this method is that the primary aromatic amine present in the sample reacts with the sodium nitrite in the presence of acid such as hydrochloric acid to obtain a diazonium salt. R − NH 2 + NaNO 2 +HCl R − N + ≡ N − Cl − + NaCl + H 2 O Sodium nitrite is added to the solution of amine in the presence of acid at 0–5 °C. The amine reacts with the nitrous acid to form nitrosamine, which is followed by the tautomerisation and the water mol...

Nephelometry and Turbidimetry

Free pharmacy material Nephelometry and Turbidimetry INTRODUCTION This is mainly used to determine the scattering of the light by the suspended particles present in the sample solution. The instruments used for the measurement of the scattering are called nephelometer and turbidimeters. The choice between the nephelometry and turbidimetry depends upon the fraction of light scattered. This light scattering by the particles which are present in the colloids is known as the Tyndall affect. Nephelometry is the measurement of the scattered light by the suspended particles at right angles to the incident beam. This method is mainly used for the determination of the low concentration suspensions. Turbidimetry is the measurement of the transmitted light by the suspended particles to the incident beam. This is used for the determination of the high concentration suspensions. PRINCIPLE Light scattering is the physical character of the sample which will depend on the following: ...

Conductometry

Free pharmacy Conductometry INTRODUCTION Conductometry is the measurement of the electrical conductivity of a solution. The conductance is defined as the current flow through the conductor. In other words, it is defined as the reciprocal of the resistance. The unit for the conductance is Seimens (S) which is the reciprocal of Ohm's (Ω −1 ). This method is mainly used for the determination of the physico-chemical properties of the compounds. PRINCIPLE The main principle involved in this method is that the movement of the ions creates the electrical conductivity. The movement of the ions is mainly depended on the concentration of the ions. A + B − + C + D − AD + C + B − where A + B − is the solution of strong electrolyte; C + D − is the solution of the reagent. Here the ionic concentration of A + is determined by reacting the electrolyte solution with the reagent solution so that the A + ions are replaced by the C + ions. This replacement of the ions w...